Cornucopia: Partially Automated Reverse Engineering
of String Manipulation Programs

Manav Malik
Mentor High School
Mentor, OH, USA
manavmalik36@gmail.com

Abstract

As the field of cybersecurity grows ever larger, so does its
influence in education. Specifically, recent years have seen
a major increase in popularity of capture-the-flag competi-
tions, of which reversing engineering (frequently of string
manipulation programs) makes up a major part. These chal-
lenges involve determining the necessary inputs for a pro-
gram to produce a desired output. Reverse engineering Python
source code is a non-trivial task so performing it manually
frequently becomes infeasible.

This paper presents Cornucopia, a partially automated re-
verse engineering tool that operates over Python source code
to determine necessary inputs to arrive at outputs. Cornu-
copia takes advantage of symbolic representation to partially
automate the process of reverse engineering programs that
are affine or include conditional branching. A basic evalua-
tion of Cornucopia finds that it significantly reduces human
interaction in reversing, and is composable.

1 Introduction

In recent years, capture-the-flag cybersecurity competitions
(CTFs) have been rising in popularity [McDaniel et al. 2016].
Reverse engineering challenges comprise a large aspect of
these competitions [Burns et al. 2017]. Reverse engineering, or
reversing, is the process of determining the required inputs
for a program to produce a given output [Miiller et al. 2000].
For example, given the program f(x) = x + 2 and the output
5, reversing this program involves determining the value of
x for which the program outputs 5 (in this case, x = 3).

However, many such challenges involve more complicated
reversing, such as string manipulation programs which take
in text as input and perform sequences of operations to pro-
duce mangled outputs. Figure 1 shows a basic example of a
string manipulation program that adds 1 to each letter of the
input and swaps adjacent pairs of letters. Reversing this pro-
gram involves noticing that by subtracting 1 from each letter
of the expected output “BQTTPXES” and swapping adjacent
pairs, we arrive at the necessary input “PASSWORD.” Be-
cause this program involves dependences across letter boxes,
reversing it is not as simple as solving eight independent
algebraic equations.

While the above example is relatively straightforward,
it is not difficult to imagine a more complex sequence of
operations whose inverses are less obvious. In situations

X X

Bl o | T | T

W 0 R D
XX
P X E S
Figure 1. String manipulation program that adds 1 to each
letter and swaps adjacent pairs

like these, some degree of automated reasoning can be very

helpful.

1.1 Challenges in Automated Reasoning

Automatically reversing programs is, in general, undecid-
able!l. By restricting the class of programs that can be re-
versed, the problem goes from being an impossible one to a
possible but difficult one.

There are three major obstacles to manual reasoning that
make reversing string manipulation programs particularly
challenging: complex algebraic transformations, arbitrary
dependences across letters positions, and program control
flow.

Algebraic Transformations. In the example in Figure 1
adding 1 to every letter is an instance of an algebraic transfor-
mation. While the inverse for this transformation is readily
apparent, that may not be true for more complicated expres-
sions. For instance, a function that multiplies each letter by
its position in the string and wraps around when necessary
is not as straightforward.

Positional Dependences. Again, referring to the example
in Figure 1, the swapping induces a dependence between
adjacent letter positions. As these dependences become more
convoluted, keeping track of them becomes much more dif-
ficult.

Control Flow. Programs typically include conditionals
(such as if-else statements), which create branching control
flow. Each path through the program represents a different
set of operations applied to the input, so reversing these

! An undecidable problem is one for which it can be proven that no algorithm
exists which solves it. A classic example of this is the Halting Problem.

def f(x):
if x > 5:
y =x * 2
else:
y =x+t2
return y

Figure 2. Python program showing conditional control flow

requires knowing a priori which path was taken. For example,
consider the Python program in Figure 2. If the expected
output is 8, analyzing the two paths through the program
yields 4 and 6 as potential inputs. However, looking at the
condition shows that 6 is the only correct answer. As the
number of paths grows exponentially with the number of
conditions, analyzing all of these quickly becomes infeasible
to do by hand.

1.2 Cornucopia

Cornucopia is a partially automated reversing system that
uses symbolic program representation to determine execution
paths and, for each execution path, determine the possible
inputs that would result in the desired output. This entails
creating a symbolic variable (or symbol) for each character
of the input and passing it through the given function. Each
symbol keeps track of the operations performed on it, and
Cornucopia tries to solve for the symbol by setting the final
expression equal to the expected output.

Cornucopia can also handle the challenges in automated
reasoning given in Section 1.1.

While a program can have arbitrarily complex algebraic
transformations, Cornucopia’s use of symbolic execution
makes it simple to keep track of these. Therefore, as long as
the function is affine?, Cornucopia can reverse it. Cornucopia
depends on linear algebra to solve for the values of symbols,
so only linear systems of equations are allowed. Thus, it
cannot handle functions that are not affine.

Additionally, symbolic execution is entirely position inde-
pendent. Because Cornucopia depends only on the values of
symbols and not their positions, this means that handling
positional dependences is no more difficult than handling
algebraic transformations.

Finally, Cornucopia uses nondeterminism® to deal with
conditionals. When a symbol encounters a branch in a pro-
gram, it gets lifted into a nondeterministic state that holds
all of its possible values from both branches. For example,
in Figure 2, after the conditional is executed, the symbol y
is tracking the fact that its value is x - 2 if x > 5 or x + 2

2 An affine function consists of a linear combination of its variables followed
by an addition of an optional constant. In other words, an affine function
only uses addition and scaling (noting that subtraction is simply addition
of a negative).

3 A nondeterministic variable can have any one of many possible values.

otherwise. Setting this nondeterministic symbol equal to 8,
Cornucopia can solve for x by attempting to solve both equa-
tions (x - 2 = 8 and x + 2 = 8) and only keeping the values
that are consistent with the associated conditions.

This paper presents the following contributions:

1. Cornucopia, a partially automated reverse engineering
tool.

2. Symbolic variables that represent different types of
programs (LinearSymbols and ConditionPacks).

3. Evaluating the effectiveness of Cornucopia involves
examining two main factors: how it minimizes user
interaction and how it can be composable.

1.3 Related Work

There is a class of reverse-engineering frameworks for de-
compilation and code analysis [Binary Ninja 2022; Fergu-
son and Kaminsky 2008; Ghidra 2021; radare2 2022]. The
most closely relevant of these tools here is Ghidra. Users in-
put compiled binaries and Ghidra automatically decompiles
them into source code. Ghidra also allows users to explore
the decompiled source code by, for instance, tracing through
function execution and finding particular symbols in the
binary. While Ghidra produces source code from a compiled
binary, Cornucopia focuses on reversing the source code to
determine inputs to a function given an output.

GhiHorn, a Ghidra plugin, performs path analysis on
Ghidra’s decompiled output [Gennari 2021]. It uses an SMT
solver* to determine a possible input that triggers the ex-
ecution of a particular code path. In contrast to GhiHorn,
which is designed to reverse engineer specific control flow
paths, Cornucopia’s goal is to reverse data flow through a
program. Cornucopia’s specialized focus allows it to incor-
porate domain knowledge to apply techniques only useful
in reversing data flow.

2 Methods
2.1 Symbolic Variables

A symbolic variable is a variable that does not have a concrete
value. Rather, it represents sequences of computations that
are being performed on it. For example, when a function is
given symbolic input, it returns a symbolic representation
of the operations without actually performing them. Every
operation performed accumulates on a computation graph
and, in the end, this graph represents the entire expression
[Torlak and Bodik 2013]. For example, the computation graph
for the function x + 1 is shown in Figure 3a.

Furthermore, symbolic variables are composable, meaning
the computation graph from one function can be passed
through a second function and the resulting computation
graph would represent the composition of both functions.

4Given a set of variables and constraints, an SMT (Satisfiability Modulo
Theories) solver either determines that the constraints are unsatisfiable or
instantiates the variables with values that satisfy the constraints.

(b) (x +1)?

(@a)x+1

Figure 3. Examples of computation graphs

For example, the resulting computation graph of when the
function from Figure 3a is passed through the function x? is
shown in Figure 3b.

Note that there exists a symbolic variable with no com-
putations attached to it (i.e., a single node in a computation
graph, just “x”).

Generic symbolic variables (and computation graphs) can
represent any function. Because of how general these can be,
any automated system cannot determine what these opera-
tions are and how to reverse them. By avoiding generality
and specializing to a few cases, Cornucopia makes it much
easier by using symbolic variables that can only handle cer-
tain operations.

2.2 Linear Operations

2.2.1 LinearSymbols. The symbolic variable specialized
to linear operations is the LinearSymbol. The only operations
a LinearSymbol can track are those that consist of scaling
it by a constant integer, or computing the sum of other Lin-
earSymbols. A LinearSymbol is represented as a lookup table
that maps a set of names to their coefficients. For example,
the lookup table for a LinearSymbol representing 2x — 3y
looks like this:

{x > 2,y > -3« > 0}

Here, * — 0 means that any name not explicitly present in
the LinearSymbol gets mapped by default to 0.

There are two operations that can be performed a Lin-
earSymbol: summing and scaling. For example, let

A={x; > ny,...,xp > ni}

B={x; > my,...,xx — mg}

and let z be an arbitrary integer. Then

A+B={x; > ni+my,....,xx = np+my}

and
z-A={x; > z-ny,....,Xx = 2 Ng}
(Remember that the default coefficient is 0, so any names
present in one symbol but not the other simply get copied
over to the sum.)
Additionally, when creating a new LinearSymbol, the
lookup table looks like this:

{x > 1,* > 0}

Note that constants® themselves can be modeled as Lin-
earSymbols by having coefficients associated to the special
name 1. For example, the lookup table for the expression
2x + 5 looks like this:

{x > 2,1—>5*—> 0}

2.2.2 Using LinearSymbols. To reverse a linear string
manipulation function, the user creates a list of LinearSym-
bols with one for each character of the string. This list is then
passed into the function and the modified LinearSymbols
are reversed as described in Section 2.2.3.

For example, consider the Python program in Figure 6. If
the desired output is three characters long, the inputted list
of LinearSymbols will look like this:

[{x1 = 1, > 0}, {xs = 1,x > 0}, {x3 > 1, — 0}]

Once this list is passed through case_study_1, the resulting
LinearSymbols will be:

[{x1 — 2,x, > 1,1 — 5,% — 0},
{x2 > 2,x3 > 1,1 > 5,% — 0},
{x3 > 2,x;1 > 2,x, > 1,1 - 10, — 0}]

With these modified LinearSymbols, Cornucopia can use the
expected outputs to determine what the required values of
X1, X2, and x3 are.

2.2.3 Reversing LinearSymbols. To reverse a set of Lin-
earSymbols, Cornucopia builds and solves a system of linear
equations. Referring to the above example and given that
the desired output is [341, 314, 548], Cornucopia creates this
system of equations:

X1 2+x2+5 =341
X+ 2+x3+5=314
X3:-2+x1-2+xy+ 10 =548

Using linear algebra, Cornucopia can solve this (or more
complicated systems) to determine that the desired values
are x; = 116, x, = 104, and x3 = 101 [Dumas and Pernet
2012].

2.3 Conditional Branching

2.3.1 ConditionPacks. Conditional branching is more
complicated because it involves keeping track of not just
one set of computations but all possible sets of computations
(corresponding to paths through the program). To keep track
of all of these possibilities simultaneously, ConditionPack
symbolic variables are used. A ConditionPack consists of:

1. An expected output value
2. A set of possible paths that reach that output

Each path consists of a boolean expression representing the
conditions that must be met for that path to be taken (note
that this is an accumulation of all the conditionals along that

SThis is a constant being added to a LinearSymbol, not a scaling constant.

if a:

if b: if a and b:
1 # 1
else: elif a and not b:
2 # 2
else: elif not a and c:
if c: # 3
3 elif not a and not c:
else: # 4
#4 (b) Inline branches
(a) Nested branches

Figure 4. Removing nested branches

if a:
#1
elif b:
2
else;
3

Figure 5. Multiple branches of a conditional

path), and the computation® performed on the inputs in that
path. For the sake of simplicity, when the computation itself
is a ConditionPack, it is “inlined” (i.e., its paths are added to
the parent ConditionPack).

Consider again the example program in Figure 2 (again
assuming the desired output is 8). The ConditionPack for
this program would look like:

{x>5:x-2,x<5:x+2} > 38

2.3.2 Using ConditionPacks. When creating a Condi-
tionPack for a branch in a program, the user must first re-
move any nested branching by inlining them into top-level
branches. An example of this is shown in Figure 4.

Then, they must determine the condition for each branch,
noting that this is the conjunction of its own condition and
the negations of the previous conditions. For example, in
Figure 5, the condition’ associated with branch 1 is simply a,
for branch 2 it is —a A b, and for branch 3 itis —a A =b A c.

After determining the computation associated with each
branch, the user combines these into a ConditionPack. Mul-
tiple sequential conditionals can be compiled into individual
ConditionPacks and solved individually by passing contexts
between them (Section 2.3.3) or combined into one large
ConditionPack.

2.3.3 Contexts. A context maps each variable to a value.
Cornucopia uses these to track intermediate solutions to a

This computation can either be an arbitrary computation graph (as de-
scribed in Section 2.1) or itself a specialized symbolic variable such a Lin-
earSymbol (as described in Section 2.2.1).

74 is logical NOT, A is logical AND

sequence of branches. When given two consecutive branches,
Cornucopia can solve them independently (as described in
Section 2.3.4), first producing a set of contexts encoding the
possible solutions to the first branch (the context passed into
the initial branch being empty). Each context is then used
in solving the second branch, to ensure that every possible
solution Cornucopia comes up with is compatible with the
corresponding solution from the first branch. In particular,
this lets Cornucopia “prune” solutions to the first branch
that result in contradictions in the second branch.

2.3.4 Solving ConditionPacks. To solve a Condition-
Pack, Cornucopia iterates over all possible paths as shown in
Algorithm 1. For each path, Cornucopia creates the following
constraints:

1. One for each variable in the context, asserting that the
variable must be assigned its value in the context

2. One to assert that the conditions necessary to execute
the path are met

3. One to assert that the result of the computation along
that path matches the output

To solve this set of constraints, Cornucopia uses the Z3 The-
orem Prover [de Moura and Bjerner 2008]. This can have
one of two outcomes: satisfiable and unsatisfiable.

If Z3 determines that the constraints are satisfiable, it
returns a model that associates a concrete value to each
variable used in the constraints. This model represents a
possible solution to the branch along the current path which
is then packaged into a new context and added to the set of
solutions.

If the constraints are deemed unsatisfiable, Z3 returns a
proof that there is no possible solution to the given set of
constraints. This means that in the given context, there is
no way for the current path to produce the expected output.
(For example, the path consists of doubling an integer but
the expected output is odd, or it requires a different value
for a variable than the one assigned to it in the context.)

After Cornucopia iterates over all the paths, it returns
the resulting set of contexts. These are either possible final
solutions or can be used in further parts of the program.

3 Results
There are two main criteria on which to evaluate Cornucopia:

1. Does it minimize user interaction? That is, does
using Cornucopia to reverse a program make it less
difficult?

2. Is it composable? In other words, can smaller, indi-
vidually reversible parts be combined into larger, more
complex programs?

To assess these, two case studies were used.

3.1 Minimizing User Interaction

First, refer to Case Study 1, shown in Figure 6. Given the

Algorithm 1: Solving ConditionPacks

Algorithm SolvePack(paths, output, context)
answers = [];

foreach condition, computation € paths do
constraints «— (;

AddConstraint (constraints, context);
AddConstraint (constraints, condition);

if solution « Solve(constraints) then
| answers.add(context U solution);

return answers

def case_study_1(x):

for i in range(len(x)):
double it...
x[i] = x[i] % 2
...add the value of the next element...
x[i] = x[i] + x[(d + 1) % len(x)]
...and finally, add five.
x[i] = x[i]l + 5

return x

Figure 6. Python program showing linear transformations

import solver
create LinearSymbols x1, x2, x3
symbols = [LinearSymbol(f'x{i+13}")
for i in range(3)]
pass the symbols through the function
x = case_study_1(symbols)
solve the system of equations
n = solver.System(x)
n.solve([341, 314, 548])

Figure 7. Cornucopia reversing case_study_1

desired output, [341, 314, 548], reversing this program man-
ually would entail writing out the inverse of the function.
This becomes difficult because the user must recognize that,
because the values of the characters influence each other, it
is necessary for the inverse to iterate backwards through the
list. Additionally, determining the inverses of each computa-
tion — especially the ones involving multiple characters at a
time — can be non-trivial.

Instead, because the only computations in this function
are linear and positional, Cornucopia can reverse it using
only LinearSymbols. The relatively simple code required to
do this (shown in Figure 7) entails creating LinearSymbols
for each character, passing them through the function, and
building and solving the resulting system of equations.

AddConstraint(constraints, computation == output)

5

—— Cornucopia; O(1)
—==- Manual; O(n)

w
=]
I

N,
\,

~

wn
L

N\
hY

Number of Manual Steps
= N
w (=]
. L
AY
hY
N
Ay

=
o

e
&l
L
\

g
q

T T T T T T
1o 1.5 2.0 2.5 3.0 3.5 4.0
Number of Linear Transformations (n)

o
[=)
o
v

Figure 8. Problem complexities for reversing linear pro-
grams

Furthermore, while programs including combinations of
linear transformations can become arbitrarily complex, the
code required to reverse the program with Cornucopia re-
mains more or less the same, provided the function remains
entirely linear. Essentially, this means that the problem com-
plexity of manually reversing a linear program is O(n) while
reversing it with Cornucopia is O(1) (where n is the number
of individual linear transformations). In other words, revers-
ing a linear program manually means that the number of
manual steps required increases linearly as the number of lin-
ear transformations does, while the number of manual steps
required in reversing it with Cornucopia remains constant.
This difference is shown in Figure 8.

Additionally, looking at conditional statements, the prob-
lem complexity of manually reversing these is O(2") (as each
branch has two possibilities that must be addressed) while
reversing it with Cornucopia is O(n) (where n is the number
of conditionals). This is shown in Figure 9.

3.2 Composability

Next, consider Case Study 2, shown in Figure 10a. This pro-
gram shows a combination of linear operations and condi-
tional branching. Because Cornucopia is composable, these
can be split into two distinct functions (as in Figure 10b) and
reversed separately given the expected output of [334, 301, 322].

function2 is applied second so it must be reversed first.
To do this, it can be written as a ConditionPack. First, the
change function must be rewritten inline like in Figure 10c.
The resulting ConditionPack for the first character is shown
in Figure 11. The only possible value that satisfies the given
constraints for all paths is x; = 368. This means that the first
character of the output of function1 must be 368.

Now, reversing function1 is relatively simple because it
is entirely linear. Figure 12 shows the LinearSymbol created

—— Cornucopia; 0(n)
14 —==- Manual; O(27n)
r
i/

12 /
w /
o) /
& 10 J
- 7/
3 /
5 8- ’
= e
E I’
T 61 d
o Vd
E e
2 4y e

f"
21 e
& T T T T T T T T
olo 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0

Number of Conditionals (n)

Figure 9. Problem complexities for reversing conditional
programs

for the first character of the input. The only solution to this
is x1 = 195. This same principle can be applied to the other
characters of the string as well, showing how Cornucopia is
composable.

4 Discussion

Cornucopia is a reverse engineering tool that operates over
Python source code to determine the necessary inputs to a
function to produce a desired output. It does this primarily
using specialized symbolic variables. Using these variables
grants Cornucopia all the benefits of symbolic execution
without the pitfalls of arbitrary generalization.

Regardless of its length or complexity, Cornucopia can
easily reverse a program consisting of only linear operations
with very little user interaction. Though the complexity of
the code required to invoke Cornucopia on an affine program
remains constant despite the complexity of the program, the
same does not hold true for manually writing out the inverse
of the program. As a linear program becomes more and more
complex, so does its inverse which means that Cornucopia
allows the user to skip this non-trivial task and easily reverse
the program.

Furthermore, Cornucopia can reverse programs that con-
tain branching control flow. Instead of having to manually
analyze each possible path in the program and determine
all the possible solutions, the user simply needs to translate
the branches into a ConditionalPack. Once this is created,
Cornucopia handles the analysis and determines possible
solutions to satisfy the branches.

From the examples in Section 3, it becomes evident that
Cornucopia is useful in handling linear operations and condi-
tional branching. Its ability to significantly decrease user in-
teraction makes it an effective tool. Additionally, its compos-
ability allows it to handle arbitrarily complex combinations

def change(x):
if x < 82:
X =X * 4 -2
elif x > 143:
if x > 195:
x -= 34
else:
X =xx*x2 -1
else:
X += 24
return x

def case_study_2(inp):
out = map(lambda x: change(2 * x - 4),
inp)
return list(out)

(a) Original program

def function1(inp):
out = map(lambda x: 2 * x - 4, inp)
return out

def function2(inp):
out = map(lambda x: change(x), out)
return out

def case_study_2(inp):
out = functionl(inp)
out = function2(out)
return list(out)

(b) Divided program

def change_inlined(x):

if x < 82:
X =X * 4 -2

elif x > 143 and x > 195:
x -= 34

elif x > 143 and not x > 195:
X =xx*x2 -1

else:
X += 24

return x

(c) Change function inline

Figure 10. Python program showing conditional branching
and linear transformations

of linear operations and branches in programs. Cornucopia’s
use of symbolic subunits (LinearSymbols and Conditional-
Packs) allows it to reverse some specific cases of programs
that would not have been otherwise reversible because of
their generalness.

x1 = ConditionPack(

334, ['x'],
[(lambda x: x * 4 - 2, lambda x: [x < 82]),
(lambda x: x - 34,
lambda x: [x > 143, x > 195,
z3.Not(x < 82)1),
(lambda x: x * 2 - 1, lambda x:

[x > 143, z3.Not(x > 195),
z3.Not(x < 82)1),

(lambda x: x + 24,

lambda x: [z3.Not(x > 143),
z3.Not(x < 82)1)1D)

x1.solve()

Figure 11. ConditionPack for function2

symbols = [LinearSymbol('x1"')]
x = functionl(symbols)

n = System(x)

n.solve([386])

Figure 12. LinearSymbol for function1

4.1 Limitations

Though Cornucopia is powerful in these respects, it also has
two major limitations:

1. Limited use cases. Because of the highly specific na-
ture of the symbolic variables Cornucopia uses, it can
only handle a small subset of string manipulation pro-
grams (those that consist only of linear operations —
adding and scaling — and branching control flow). This
means that it is only useful in certain specialized cases
rather than being generally applicable to all string
manipulation programs.

2. Cornucopia is not fully automated. Reversing pro-
grams that contain conditional branching requires a
quite a bit of user interaction and this amount scales
up as the branches progressively become more com-
plex. That is, though ConditionalPacks are still simpler
than manual analyses of a program’s branches, they
become more complex as more branches and condi-
tions are added. Additionally, the user first needs to
manually recognize the types of symbols that must be
created for each program.

4.2 Future Work

To address these limitations, future work extending or build-
ing upon Cornucopia is necessary.

Additional types of symbolic variables can be created that
can handle a wider range of programs. Some such examples
are structures that handle higher degrees of transformations

as well as structures that use nondeterminism to handle the
modulus operator. These would expand the possible func-
tionalities of Cornucopia to be able to reverse more diverse
types of programs. Furthermore, Cornucopia’s existing com-
posability means that these additional types of programs can
be reversed individually and put together.

Addressing the second limitation could entail creating a
function that automatically creates ConditionPacks for a
set of else and elif clauses. This would mean that the user
would not need to manually enumerate all the conditions that
must be met for the path to be taken. A further expansion
to this could be analyzing the source code automatically
and creating ConditionPacks based on the syntax. Both of
these additions would make Cornucopia more automated
and would decrease the amount of user interaction necessary.
Source code analysis (such as through the implementation of
a typesystem or DSL) could automatically recognize where
different types of symbols need to be used and translate them
without requiring user input.

References

Binary Ninja 2022. Binary Ninja. https://binary.ninja. Vector 35.

Tanner J. Burns, Samuel C. Rios, Thomas K. Jordan, Qijun Gu, and Trevor
Underwood. 2017. Analysis and Exercises for Engaging Beginners in
Online CTF Competitions for Security Education. In 2017 USENIX Work-
shop on Advances in Security Education (ASE 17). USENIX Association,
Vancouver, BC. https://www.usenix.org/conference/ase17/workshop-
program/presentation/burns

Leonardo de Moura and Nikolaj Bjerner. 2008. Z3: An Efficient SMT Solver.
In Tools and Algorithms for the Construction and Analysis of Systems,
C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 337-340.

Jean-Guillaume Dumas and Clément Pernet. 2012. Computational linear
algebra over finite fields. arXiv preprint arXiv:1204.3735 (2012).

Justin Ferguson and Dan Kaminsky. 2008. Reverse engineering code with Ida
Pro. Syngress Pub.

J. Gennari. 2021. GhiHorn: Path Analysis in Ghidra Using SMT
Solvers. Carnegie Mellon University’s Software Engineering Institute
Blog. http://insights.sei.cmu.edu/blog/ghihorn-path-analysis-in-ghidra-
using-smt-solvers/

Ghidra 2021. Ghidra (release 10.1.1). https://github.com/
NationalSecurityAgency/ghidra. National Security Agency.

Lucas McDaniel, Erik Talvi, and Brian Hay. 2016. Capture the Flag as Cyber
Security Introduction. In 2016 49th Hawaii International Conference on
System Sciences (HICSS). 5479-5486. https://doi.org/10.1109/HICSS.2016.
677

Hausi A. Miiller, Jens H. Jahnke, Dennis B. Smith, Margaret-Anne Storey,
Scott R. Tilley, and Kenny Wong. 2000. Reverse Engineering: A Roadmap.
In Proceedings of the Conference on The Future of Software Engineering
(Limerick, Ireland) (ICSE °00). Association for Computing Machinery,
New York, NY, USA, 47-60. https://doi.org/10.1145/336512.336526

radare2 2022. radare2 (release 5.6.8). https://github.com/radareorg/radare2.

Emina Torlak and Rastislav Bodik. 2013. Growing Solver-Aided Languages
with Rosette (Onward! 2013). Association for Computing Machinery, New
York, NY, USA, 135-152. https://doi.org/10.1145/2509578.2509586

https://binary.ninja
https://www.usenix.org/conference/ase17/workshop-program/presentation/burns
https://www.usenix.org/conference/ase17/workshop-program/presentation/burns
http://insights.sei.cmu.edu/blog/ghihorn-path-analysis-in-ghidra-using-smt-solvers/
http://insights.sei.cmu.edu/blog/ghihorn-path-analysis-in-ghidra-using-smt-solvers/
https://github.com/NationalSecurityAgency/ghidra
https://github.com/NationalSecurityAgency/ghidra
https://doi.org/10.1109/HICSS.2016.677
https://doi.org/10.1109/HICSS.2016.677
https://doi.org/10.1145/336512.336526
https://github.com/radareorg/radare2
https://doi.org/10.1145/2509578.2509586

	Abstract
	1 Introduction
	1.1 Challenges in Automated Reasoning
	1.2 Cornucopia
	1.3 Related Work

	2 Methods
	2.1 Symbolic Variables
	2.2 Linear Operations
	2.3 Conditional Branching

	3 Results
	3.1 Minimizing User Interaction
	3.2 Composability

	4 Discussion
	4.1 Limitations
	4.2 Future Work

	References

